
A modular middleware approach for exergaming

Martina Eckert, Ignacio Gómez-Martinho, Juan Meneses, José F. Martínez Ortega
Research Center on Software Technologies and Multimedia Systems for Sustainability (CITSEM)

Technical University of Madrid, Spain
Martina.eckert@upm.es

Abstract—This paper presents the design of a new exergaming
environment consisting of a modular middleware tool aimed at
serving for intelligent adventure games. The middleware provides
a modular and user-adaptive interface for data exchange between
different devices (to date it supports a motion capture camera, a
mobile phone, and a VR headset) and Blender. The target group is
formed by young people between ages 6 to 26 with different
physical diseases (muscular dystrophy, cerebral palsy, accidents,
etc.). The gaming environment focuses especially on user
awareness, immersion, and adaptability to special needs.

Keywords—gaming; rehabilitation; physical exercises; virtual
reality, animation; Blender; Motion Capture; user awareness; NUI

I. INTRODUCTION

A large number of applications has been created for physical
exercises based on VR (Virtual Reality) games. Nevertheless,
the developments are still mainly taking part in laboratories, and
few can be found that are part of daily life. The reasons seem to
be, that most applications are developed for special cases (i.e.
stroke, Parkinson, etc.) and are not commonly applicable [1]. On
the other side, several applications have been found which aim
at serving for everybody, but they are not accessible for patients
with non-frequent problems, e.g. if they have limited motor
abilities, [2] analyzes general requirements for motor
rehabilitation. Also, although most authors report good
acceptation and fun, many games are quite repetitive and too
evidently focused on the objective, such that the patients are
quite aware of the movements to perform and notice their
limitations, which could lead to discouragement. Here, a lot of
self-motivation and discipline is required, which is already
difficult for adults and even more for children and youngsters.
Last but not least, much work is needed to control and evaluate
the exertion of the exercises adequately to avoid overexertion
[1].

Therefore, an ideal exercise game should fulfill the
following requirements:

Allow individual configurations according to the patients’
physical limitations and necessities, i.e. allow the selection of
body parts to use or to exclude, the programming of exercises,
the adjustment of parameters like frequency, duration or number
of repetitions of certain movements, etc.

 Automatic and intelligent user adaptability during
gameplay: understand what the person needs and likes and
respond by changing the task (exercise), adjusting the level of
difficulty (lowering it in case of tiredness and rising it in case of
success or learning) or providing positive feedback in form of
sounds, game prizes, bonus points, etc.

Immersion and inclusion: The game should involve the
users in a way that they don’t realize they are doing exercises,
and what’s more, it gets them hooked in a good way, such that
they want to integrate the play in their daily leisure activities.
Such a game would fulfill also an important psychological
function by enabling inclusion: disabled children desire to be
integrated as much as everyone, but often cannot play
commercial games together with their friends.

To cope with all the above mentioned requirements, the
gaming environment must obtain, store, and evaluate a huge
amount of data, such as quality of performed movements,
performance over time (in the same session or comparing
different ones), the user’s state (animated, bored or exhausted),
possible overexertion, variety of movements (to avoid boredom,
discouragement and overexertion, distinguish weakness from
boredom) etc.

This work presents a proposal for such a new form of
combining games and exercises. It is composed of a modular
middleware which can handle different inputs (to date Mocap
(motion capture) camera, mobile phone, and VR glasses) and
passes the data to a VR game, implemented with the open source
Blender software. A first state of the work in progress was
previously presented in [3].

II. SYSTEM DESCRIPTION

A. Middleware

The centerpiece of the system is a modularly designed
program that sends data obtained from any connected NUI
(Natural User Interface) device to an animation software (in this
work Blender), see Fig. 1. The middleware is necessary since
Blender cannot interact with the SDKs and libraries that
manufacturers provide to obtain data from their devices.

The user interface is built with tabs to access the different
modules which contain the graphic controllers for the devices.
Currently, it supports a Mocap camera, a mobile phone, and a
VR headgear; more devices could be added easily at any time.

During execution, the devices continuously provide
information about the position and movements of the player:
the smartphone’s accelerometer detects the orientation relative
to the ground and the speed at which it is swung, this
information can be used by the game for accurate hand-
tracking. The Mocap camera processes images from the
player’s complete body and tracks a certain set of joints and
bones. Its output allows to recreate a 3D model of her/his
‘skeleton’ in the gaming software. The VR headgear allows a

2016 International Conference on Consumer Electronics-Berlin

978-1-5090-2096-6/16/$31.00 ©2016 IEEE 172

much more accurate measure of her/his head’s position and
provides the user with a much more immersive experience.

Each module implements its own communication system,
defined by the API of each particular device, and the data is
transmitted to the middleware at a regular rate via USB. Several
communication channels are established with Blender and data
is sent in response to requests. The delivery of data has been
implemented with the free library Python-OSC [4], which codes
its messages accordingly to the Open Sound Control protocol,
a variant of MIDI that runs on local UDP.

B. Gaming environment

The receiver in Blender is implemented through a Python
add-on. This add-on allows the developer to insert a receiver
object in the 3D environment, which collects data in real-time
during gameplay and registers the position of the user in each
frame of the game. The receivers are 3D models that represent
the sending devices: the mobile phone is represented by a cube,
the HMD (head mounted device) is implemented through an in-
game camera, and a set of points and lines represent the player’s
joints and bones. Fig. 2 shows the initial skeleton and two boxes
for mobile phone and headset. Every instant, when new data
(rotation angles and spatial positions) is received, the script
updates the position of the models, achieving thus an accurate
depiction of the user’s movement.

The Virtual Reality effect is achieved by translating the
player’s head movement to a virtual stereoscopic 3D camera,
associated with the head of the avatar. The result is a first person
view with epipolar images for each of the user’s eyes. When
displayed on the screens of the HMD, the player feels immersed
in the game.

As mentioned in the beginning, the purpose of this project
is to develop video games for physical exercises, which would
be useful for an everyday fitness or to pass through a special
rehabilitation program. Concretely, the patients are aimed to
play an action-adventure game controlled with their bodies,
which will be composed of many different tasks that are
specially configured and selected for their needs. The game
itself does not reveal which specific training is performed at
each instant; the players will only be driven by the motivation
to fulfill a mission, to reach some score or goal without noticing
that they realize the correct exercises to achieve it. Here, the

crucial part of the system is the reliable detection of corporal
movements with the help of a Mocap camera. The captured
motion can then be used in different ways:

 As a simple copy – which means that the avatar is doing
the same movements as the player.

 As a command – which means that certain movements
are not copied to the avatar but used to trigger some
actions, e.g. a foot-shaking to make the character jump
or a clap of hands for pausing the game.

 As a boosted copy – which means that the avatar does
nearly the same movement as the player, but “better,”
i.e. in a game-like, illusive, comic-like or imaginary way
if desired, or in a totally natural way, when the patient is
not able to perform it due to some disability or accident.

This last type of moves are the most interesting one for the
here presented investigation, as it widens the utility of the game
enormously. On one hand, virtual movements achieve a much
better immersion of the user in the game than the exact copy,
because a game is an elusive environment and the players want
to forget about their normal world and transform into different
personalities. In this way, they could imagine being e.g.
different creatures with abilities they do not have in the real
world. This is especially interesting for handicapped people,
e.g. wheelchair users dream to walk and run, children with
muscle weakness want to shoot a ball like their friends or stroke
patients want to coordinate both body parts in the same way like
before to play golf or similar. Here, the gaming environment
will apply enhancement methods to achieve a multiplication of
the real movements in a way that the patients imagine doing it
by themselves.

Fig. 1. Middleware design

Fig. 2. Blender scene showing the basic skeleton, near the head the HMD
object and near the right hand the mobile object. On the left add-ons for
Mocap camera and HMD

2016 International Conference on Consumer Electronics-Berlin

978-1-5090-2096-6/16/$31.00 ©2016 IEEE 173

C. Implementation

The translation of movements captured by the camera to the
Blender skeletons can be realized in different ways. The add-on
allows the developer to define four types of receiver skeletons,
differentiated by the specific type of position data they process:

 The “Rotation Skeleton” receives only one type of data,
which is the rotation of each bone related to its root bone.
This skeleton allows determining precisely the pose of
the user but ignores his or her actual body type and size,
since the bones in this skeleton come with
predetermined lengths that may or may not resemble the
real ones. This may be inconvenient when determining
the amplitude of the movements the patient is requested
to perform in the game.

 The “Position Skeleton” receives the real distance
between the players joints in x,y,z-coordinates,
recreating their bodies and movements in the real space
perfectly. The bones are just connections between joints
without receiving the rotation data: in this way, the
rotation of the bone along its axis is randomized, which
means that the pose of the avatar is not always the one
of the user and can even look aberrant.

 The “PosRot Skeleton” or combined skeleton, as
presented in Fig. 2, solves the problems of the previous
two by processing both kinds of data: the bones receive
rotation information and are bound to the joints, which
receive their positions in x,y,z-space. This skeleton
reproduces both, the pose and the anatomy of the user
perfectly, at the cost of being much more complex than
the other skeleton types.

The combined skeleton, however, still presents a challenge to
be resolved, which is the handling of the joint’s coordinates, as
they are defined related to the Mocap camera. This can be a
serious problem when establishing reference points for the
exercises, since users will never play at the exactly same
position in the room, nor face precisely towards the camera.
Here, the “Rotation Skeleton” solves this problem, receiving
exclusively directional data for the bones while ignoring the
“global alignment” of the users. This means, if the rotation of
the bones is expressed related to each bone’s root bone, the
skeleton appears to be always facing front and standing at the
(0,0,0) position.

Finally, to determine the bones’ length, a “Position
Skeleton” is applied in the configuration phase. The measured
lengths are stored in a file, and the “Rotation Skeleton” reads it
every time it is executed. It does not matter if it does not receive
updates about the joint’s positions because the length of the
bones will always remain equal. The combination of the fixed
lengths with the updated rotation information in the joints
produces a fairly accurate representation of the player’s
position.

The formerly mentioned amplifying functionality to realize
a “boosted copy,” which is above all useful for patients with
physical limitations, is realized as follows:

 During the configuration phase, the maximum motion
range is measured for each limb. This information leads

to the multiplying factors ߙ, ,ߚ in x, y and z directions ߛ
that are necessary to magnify the movements captured
during the play.

 During the game, the received motion data is multiplied
by the formerly obtained factor to achieve normal
movements of the game character even if the user can
only make small gestures:

൥
ݔ́
ݕ́
ݖ́
൩ ൌ ൥

ߙ ∙ ݔ
ߚ ∙ ݕ
ߛ ∙ ݖ

൩ (1)

In Blender, this is implemented with an amplifier object,
which marks three points in space, as illustrated in Fig. 3 using
colored balls as visualization. The object must be placed in
point 1 (red ball), which is the position of the tip of the avatar’s
limb when it is in the resting position. This point is always
constant in relation to the spatial position of the Skeleton. Point
2 (green ball) is constantly moving while tracking the position
of the tip of the user’s leg or arm. Point 3 (yellow) is the one
that applies the amplification: α multiplies the difference of the
x-coordinates of points 1 and 2, and the resulting value marks
the distance in x between points 1 and 3. The same operation is
performed with y and z coordinates.

Fig. 3. Top: Hand-bone with 3 point amplifier object in resting position.
Bottom: Hand bone is pointing upwards. Red: origin, green: real current
position, yellow: the avatar’s hand’s position through amplification.

On the top image the bone, representing the right hand of
the user, is shown in a resting position (for a person in a
wheelchair, the hand would be pointing forwards). On the tip of
the bone we placed the mentioned three points, overlapping
because the hand is not moving. The red ball represents the
origin (point 1), the green one represents the current position of

2016 International Conference on Consumer Electronics-Berlin

978-1-5090-2096-6/16/$31.00 ©2016 IEEE 174

the hand (point 2), and the yellow one represents the amplified
position (point 3).

On the bottom half, the hand is shown pointing slightly
upwards. As can be seen, the red ball has not moved, while the
green one has followed the movement of the bone. The yellow
ball represents the amplification of the movement: in this case,
the amplifier has been set to multiply the displacement along
the z-axis (vertical) by factor 5, and the displacement along the
y-axis (horizontal) by factor 3. For the sake of simplicity, the
motion along the x-axis is multiplied by one, such that the
yellow and the green ball are exactly at the same x-position.

The magnified movements are employed by the avatar as
follows: instead of directly copying the pose of the skeleton's
joints, it tracks the displaced virtual object and inverse
kinematics are applied. As a result, a very simple gesture, e.g.
raising the tip of the hand, could be translated to lifting the
whole arm of the avatar. In future stages of the project, this
amplification will be enhanced to vary dynamically according
to the user’s progress with the rehabilitation.

Fig. 4 demonstrates this process: the hand is in the same
position as in Fig. 2, but here with an amplifying vertical factor
of 20. It can be seen how the avatar is now pointing to the
yellow ball, while the green one (representing the real
movement) is barely a few centimeters above the resting point.
The inserted photo shows the real movement of the user.

Fig. 4: The avatar is executing a boosted movement. The green ball represents
the real position of the user’s hand (see photo).

A further problem to solve is to treat with the different
resting positions and pointing directions of the hands of a
standing avatar and a sitting user (e.g. in a wheelchair). The
resting position of the player would be much above the one of
the avatar and, while the player’s hand is pointing forwards, the
resting hand of a standing person 8here the avatar) should be
hanging down. This issue has been fixed by adding an offset to
the amplifier.

Fig. 5 illustrates a case using this offset: there are a red and
a green ball (origin and moved position) showing the real

resting position and the real displacement of the player’s hand,
and a copy of each at the corresponding site within the avatar’s
range of movements. In the top image, the user points with the
hand slightly upwards, while in the bottom image it is resting
on the armrest of the wheelchair.

Fig.5: Illustration of the offset, when the user is sitting. Top: user’s hand in
motion. Bottom: User’s hand is resting on the armrest of the wheelchair.

D. Application

The here described techniques are currently implemented in
a demo game that will be used for functional tests with different
types of persons, sane and handicapped, in wheelchair or not,
mostly affected by neural muscle dystrophies.

The game will be of adventure type with multiple tasks to
fulfill. Implementation is in the beginnings, and only few
exercises have been created as e.g. rowing, climbing, flying and
hitting moles, see Fig. 6. In all examples, the avatar’s
movements will be real although the users have different
capacities. The final aesthetics will be completely different, and
all exercises will be integrated into an imaginary adventure
landscape to maximize immersion.

2016 International Conference on Consumer Electronics-Berlin

978-1-5090-2096-6/16/$31.00 ©2016 IEEE 175

Fig. 6: Examples of exercises that will be integrated into an adventure-like
gaming environment.

III. CONCLUSIONS

This paper presents a new approach of middleware, which
integrates input data of different NUI devices for the realization
of adaptive and immersive motor rehabilitation games for
young people. We introduced a completely new technique for
user integration with help of amplified user movements. This

technique should help to improve immersion and the feelings of
rehabilitation patients, as they feel more “normal”. The system
is still under development; only preliminary tests have been
performed, first results with two groups of users (sane and
affected) will be published in autumn 2016.

ACKNOWLEDGMENT

This work was sponsored by Spanish National Plan for
Scientific Tech. Res. and Innov.: TEC2013-48453-C2-2-R.

REFERENCES
[1] D. Webster and O. Celik, “Systematic review of Kinect applications in

elderly care and stroke rehabilitation,” Journal of Neuroengineering and
Rehabilitation, vol. 11, Jul 3, 2014.

[2] R. C. Menezes, P. K. A. Batista, A. Q. Ramos and A. F. C. Medeiros,
"Development of a complete game based system for physical therapy with
Kinect," IEEE 3rd International Conference on Serious Games and
Applications for Health (SeGAH), Rio de Janeiro, 2014, pp. 1-6.

[3] M. Eckert, I. Gomez-Martinho, J. Meneses, and J.F Martinez Ortega, “A
multifunctional plug-in for exergames”, IEEE International Symposium
on Consumer Electronics (ISCE), 2015.

[4] Python Software Foundation, “Python-OSC 1.5”, online:
https://pypi.python.org/pypi/python-osc, [visited: April, 7th 2016].

2016 International Conference on Consumer Electronics-Berlin

978-1-5090-2096-6/16/$31.00 ©2016 IEEE 176

